Welcher Quadrant ist Kosekan positiv?

Welcher Quadrant ist Kosekan positiv?
Welcher Quadrant ist Kosekan positiv?
Anonim

In Quadrant I, der „A“ist, sind alle sechs trigonometrischen Funktionen positiv. In Quadrant II , „Smart“, sind nur der Sinus und seine reziproke Funktion, der Kosekan, positiv. In Quadrant III, „Trig“, nur Tangens und seine reziproke Funktion, Kotangens Kotangens Kotangens. Die Kotangensfunktion ist der Kehrwert der Tangensfunktion und wird mit cot abgekürzt. Sie kann als Verhältnis der Länge der angrenzenden Seite zur Länge der Hypotenuse in einem Dreieck beschrieben werden. https://courses.lumenlearning.com › Grenzenlose Algebra › Kapitel

Trigonometrische Funktionen und der Einheitskreis | Grenzenlose Algebra

sind positiv.

Welcher Quadrant ist Sinus und Kosekan positiv?

Winkelzeichen in Quadranten

Somit haben im ersten Quadranten, wo x- und y-Koordinaten alle positiv sind, alle sechs trigonometrischen Funktionen positive Werte. Im zweiten Quadranten sind nur Sinus und Kosekans (der Kehrwert von Sinus) positiv. Im dritten Quadranten sind nur Tangens und Kotangens positiv.

Was ist in welchem Quadranten positiv?

Im Quadranten I sind sowohl die x– als auch die y-Koordinate positiv; in Quadrant II ist die x-Koordinate negativ, aber die y-Koordinate positiv; in Quadrant III sind beide negativ; und in Quadrant IV ist x positiv, aber y ist negativ.

Welche Seiten sind Kosekan?

Der Kosekans ist der Kehrwert des Sinus. Es ist das Verhältnis von der Hypotenuse zur Seite gegenüber einem gegebenen Winkel in einem rechtwinkligen Dreieck.

In welchen Quadranten ist die Sekante negativ?

Da r ein Radius ist, muss er positiv sein, also ist sec(x) überall dort negativ, wo x negativ ist. Dies ist in den Quadranten II und III.

Empfohlen: